Sunday, November 16, 2014

Physics Toys, Games, and e-Learning

Physics educators have been developing and employing digital simulations for decades. Over time these simulations have evolved into sophisticated toys and games, and have become a regular part of the physics teacher’s repertoire of instructional resources. This article is a personal reflection that takes a look at these toys and games from my own experience as a high-school physics teacher.

What is a Toy?

Here is one example of a definition. This is quoted from a blog post by Beat Schwendimann (2014), a Swiss researcher in learning and visual representation:
The main difference between toys, games and puzzles is the amount of constraint and authorship the player has over the experience. The more authorship the player has over a puzzle, the more it becomes like a toy. The more the player is the actor following the strict guides of the toy, the more the toy becomes like a puzzle. . . Changing the role of the player changes the experience: When you add a goal to toys it will become a game.
In a sense, a game comprises several toys, all working together in a particular way to achieve the goal of the game.

The equations of physics are effectively models of how the world works. When these models are put to work in some fashion, you have a simulation. Digital simulations can be toys, puzzles, or games.

A Classic Digital Toy

Probably the most well-known physics toy is Line Rider. Often referred to as a game (and derided as such), it is a simple simulation of an object sliding along a surface with little friction. The fun of this toy is that you draw the surface however you like (the “line”), and when you hit the play button a cartoon man on a sled (the “rider”) slides on the line as if it were covered with snow. The rider often crashes, or is left tumbling through space endlessly. There isn’t a built-in goal, but users often create a goal of controlling the path of the rider in some way. Paths can be deleted or saved. Some very elaborate paths have been recorded and presented publicly on YouTube. A copy of the game is embedded below, but requires a Flash plug-in. You can click here to see an HTML5 version.


How Line Rider is Used in the Classroom

A student simply playing with Line Rider discovers quickly that the rider does not necessarily follow the path. He or she immediately catches on and will try again, sometimes over and over, manipulating the line until control of the rider is achieved. Then the student might adopt another mode of use, designing specific paths to see what will happen, and eventually designing paths to carefully control what happens.

This kind of intrinsic motivation is quite engaging, and has pedagogical uses, however minor. To increase the pedagogical value, the teacher needs to construct some kind of scaffolding because the toy does not have any further intrinsic scaffolding. The physics concepts evident in Line Rider are gravity, free-fall, potential and kinetic energy, and friction. All of these concepts are accurately modeled in Line Rider, but not in overt ways, hence the need for scaffolding and guidance if this toy is to become an educational tool.

How Line Rider Fails as a Physics Toy

The primary failure of a digital toy or game is when the model underlying the simulation violates the laws of physics. This is surprisingly common. Our perception of certain experiences sometimes differs from the physical model, and simulations, especially commercial ones, will tend toward the perception rather than the model.

How big is the full moon? Making a circle with your fingers and holding your arm out, estimate the size of the moon’s disk. Now hold your thumb up, straighten your arm, and look at your thumbnail. The full moon has a diameter about half the width of your thumbnail. I know, you don’t believe it, but it’s true. No game designer or animator will ever make the moon that small because it will not be believable.

In a similar way, we perceive any acceleration as being much greater than it actually is. If you examine Line Rider, you will see that there is a control with a red box under it. This is a later addition to Line Rider. When you click on the tool and draw, it creates an “acceleration” line that patently violates the laws of physics. It is there because the rider does not move quickly enough to satisfy some users. When my students discover this tool they enthusiastically adopt it. With proper (and elaborate) scaffolding, a lesson can be made to help students understand the violation. Otherwise, Line Rider fails in this regard as an educational physics tool.

How Line Rider’s Failure Could Become a Feature

The PhET Interactive Simulations program, hosted by the University of Colorado Boulder, has numerous simulations that are quite popular with teachers. Their research is extensive, and includes such topics as intrinsic scaffolding (scaffolding built into the simulations) and student agency and ownership of the learning process (see, for example, Podolefsky, Moore, and Perkins, 2013). Here is their design strategy, quoted from their website (http://phet.colorado.edu/en/about):
To help students engage in science and mathematics through inquiry, PhET simulations are developed using the following design principles:
  • Encourage scientific inquiry
  • Provide interactivity
  • Make the invisible visible
  • Show visual mental models
  • Include multiple representations (e.g., object motion, graphs, numbers, etc.)
  • Use real-world connections
  • Give users implicit guidance (e.g., by limiting controls) in productive exploration
  • Create a simulation that can be flexibly used in many educational situations

If I were to use this design strategy to redesign Line Rider, I would add at least two tools to the toy: a way to adjust the friction of the surface, and a way to adjust the acceleration of gravity. Both of these adjustments would have numerical or descriptive indicators so users would know exactly how much and what kind of adjustment they are making. This adaptation would preserve (or possibly enhance) the scaffolding, yet still allow the user to make the game as exciting (or dull) as the user wishes. Such adjustments could include an option that would be physically impossible (such as anti-gravity). This violation of physics would be chosen by a student with full knowledge, thus obviating the need for further scaffolding to cover up the toy’s apparent failure.


References

Schwendimann, B. (2014). What is the difference between a toy, a game, a puzzle, and a sport? Proto-Knowledge (blog). Retrieved 16 Nov 2014 from http://proto-knowledge.blogspot.com/2010/12/what-is-difference-between-toy-and-game.html
Podolefsky, N., Moore, E., Perkins, K. (2013). Implicit scaffolding in interactive simulations: Design strategies to support multiple educational goals. (arXiv Reference No.: 1306.6544. Retrieved 16 Nov 2014 from http://arxiv.org/ftp/arxiv/papers/1306/1306.6544.pdf

No comments:

Post a Comment